### 1-20 | Liver

VAARI.

# QUESTIONS

- 1. What is free oscillation? Derive an expression for differential equation of free oscillations.
- oscillations.
  2. Derive an expression for differential equation of damped oscillations and obtain it general solution.
- Berive an expression for differential equation of forced oscillations and obtain its general solution.
- 4. Derive the differential wave equation of wave motion.

$$\frac{d^2y}{dt^2} = \frac{1}{\nu^2} \frac{d^2y}{dx^2}$$

5. Set up differential equation of forced vibrations and prove

$$A = \frac{f}{\sqrt{\left[(\omega^2 - p^2)^2 + 4b^2p^2\right]}}$$
$$\theta = \tan^{-1}\left(\frac{2bp}{\omega^2 - p^2}\right)$$

- 6. What are forced vibrations? Obtain the differential equation of forced vibrations and find the amplitude of forced vibrations and its phase.
- 7. What are damped oscillations? Obtain the differential equation of damped oscillation and find its general solution.



- 1. What is magnetostriction effect? Explain the production of ultrasonic wave using magnetostriction oscillator
- 2. What is piezoelectric effect? Explain the production of ultrasonic wave using piezoelectric oscillator.
- 3. Write any four applications of ultrasonic waves.
- 4. Explain:
  - (a) Piezo-electric effect
  - (b) Magnetostriction effect
- 5. A piezoelectric crystal of thickness 4mm produces ultrasonic waves of frequency 400 kHz. Calculate the thickness of this crystal to produce ultrasonic frequency of 500 kHz.

[Ans.: 3.2 mm]

6. Calculate the natural frequency of the ultrasonic waves generated by a quartz crystal having thickness of 5.5 mm. Given Y= 80 GPa,  $\rho = 2650 kg/m^3$ 

[0.49Hz]

7. Calculate the length of an iron rod which can be used to produce ultrasonic waves of frequency 20 kHz. Given:  $Y = 11.6 \times 10^{10} N/m^2$ ,  $\rho = 7.23 \times 10^3 kg/m^3$ 

[l = 0.1 m]

8. Calculate the fundamental frequency of quartz crystal 1mm thick and density 2650kg/m<sup>3</sup> and Y=8x10<sup>10</sup>N/m<sup>2</sup>

[Ans.: f = 2.747MHz]



- 1. Explain the formation of the Newton's Rings. Prove that in Newton's Rings by reflected Explain the diameters of bright Rings are proportional to square root of odd natural numbers.
- 2. A thin film of uniform thickness is illuminated by monochromatic light. Obtain the conditions of darkness and brightness of the film as observed in reflected light.
- 3. Why the centre of Newton's Rings appears dark in reflected light.
- 4. Why Newton's Rings are circular?
- 5. Discuss the interference of light in thin film.
- 6. In case of Newton's rings, prove  $D_n \propto \sqrt{n}$  where  $D_n$  is diameter of  $n^{th}$  dark ring.
- 7. Explain the interference of light in wedge shaped film and prove that for air film

$$\beta = \frac{\lambda}{2\theta}$$

- 8. Explain theory of Newton's rings for reflected light.
- 9. Light of wavelength 5500 Å falls normally on a thin wedge shaped film of R.I. 1.4 forming fringes that are 2.5 mm apart. Find the angle of wedge.

[Ans.:  $\theta = 7.85 \times 10^{-5}$  radian]

10. Newton's rings are observed in the reflected light of wavelength 5900Å. The diameter of tenth dark is 0.5 cm. Find the radius of curvature.

[Ans.: R = 1.059m]

11. Light of wavelength 5880 Å is incident on a thin film of glass ( $\mu$ =1.5) such that the angle of refraction in the plate is 60°. Calculate the smallest thickness of plate which will make it dark by reflection.

[Ans.: t = 3920 Å]

12. A parallel beam of light ( $\lambda$ =5870Å) is incident on a thin glass plate ( $\mu$ =1.5), such that the angle of refraction into the plate is  $60^{\circ}$ . Calculate the smallest thickness of the glass plate which will appear dark by reflection.

[Ans.: t = 3913 Å]

13. In Newton's ring experiment the diameter of the 15th ring was found to be 0.59cm and that of the 5th ring was 0.336cm. If the radius of the Plano-convex lens is 100cm. Calculate the wavelength of light used.

[Ans.:  $\lambda = 5893$  Å]

14. A wedge-shaped air film is formed between two glass plates by placing a paper at one end. On illuminating this film by light of 600nm wavelength. 10 fringes are seen in [Ans. 61.9°] <sup>10</sup>mm. If light is incident normally. Find the angle of wedge.

15. In Newton's rings experiment, the diameter of the 5<sup>th</sup> ring was 3.36mm & the diameter of the 15<sup>th</sup> the 15<sup>th</sup> ring was 5.90mm. Find the radius of curvature of the Plano-convex lens if the [Ans.0.99m] wavelength of the light used is 589nm.



- 1. Explain with diagram the principle and working of Ruby Laser.
- 2. Explain the principle and working of He-Ne gas laser
- 3. What does LASER stand for? In what respects it differs from an ordinary source of light?
- 4. Explain spontaneous and stimulated emission of radiation.
- 5. What is the importance of metastable state and pumping in the production of Laser?
- 6. What is active material in He-Ne laser? How population inversion is achieved in a He-Ne laser?



n

### **OUESTIONS**

- 1. What is acceptance angle for an optical fibre? Obtain mathematical expression in the angle and numerical aperture.
- Discuss the principle of fibre optics. Explain acceptance angle and numerical aperture.
   Discuss the principle of fibre optics. Explain acceptance angle and numerical aperture.
- Discuss the principle of flore optical fibre as a waveguide for light. Discuss different types
   Explain the principle of the optical fibre as a waveguide for light. Discuss different types
- of fibres.
  4. Calculate the numerical aperture of an optical fibre when the core refractive index is 1.33
- [Ans. NA=0.795] 5. Determine the numerical aperture of a step index fibre when the core refractive index is Determine the numerical aperture of a step massion and the maximum angle for entrance of light. if the fibre is placed in air.

[Ans. (1) NA=0.2441, (2) 14.13°]

6. If the maximum angle of incidence is 45° for entrance of light for a fibre placed in air, calculate the numerical aperture. What is the acceptance angle?

[Ans. (1) NA = 0.7071, (2) 90°]

7. Refractive index  $\mu_1 = 1.48 \& \mu_2 = 1.45$  in an optical fibre. Calculate numerical aperture & the maximum acceptance angle  $\theta_{max}$  if the fibre is kept in air.

$$[NA = 0.2964, \theta_{max} = 17.249]$$

8. Calculate the numerical aperture and hence the acceptance angle for an optical fiber, Given that the R.I. of the core and the cladding are 1.45 and 1.40 respectively.

[Ans.: NA = 0.37,  $\theta_m = 22.17^\circ$ ]

9. The numerical aperture of an optical fiber is 0.5 and Core refractive index is 1.54. Find the refractive index of the cladding.

[Ans.:  $n_2 = 1.456$ ]

10. A fibre cable has an acceptance angle of 30° and a core refractive index 1.4. Calculate the

[Ans.:  $n_2 = 1.30$ ]

- 11. Calculate the numerical aperture and acceptance angle of optical fibre of refractive index for core and cladding are 1.62 and 1.52 respectively.
- [Ans.: NA = 0.56,  $\theta_m = 34.08^{\circ}$ ] 12. Calculate the refractive indices of the core and cladding material of a fibre having

[Ans.: 
$$n_1 = 1.42$$
,  $n_2$ 

13. If the acceptance angle for a given fibre is 68.16°. Calculate the maximum ent  $u_2 = 1.403$ ] and numerical aperture. If the cladding glass has a R.I. 1.52 calculate the ref ngle (R.I.) of the core glass. ex

[Ans.:  $\theta_m = 34.08^\circ$ , NA = 0.55



- 1. What is Uncertainty principle? Using this principle prove that electron cannot exist in the
- 2. Derive time independent Schrodinger wave equation. What is wave function?
- 2. Derive time dependent Schrödinger wave equation. What is physical significance of
- 4. An electron starts from a rest and moves freely in an electric field of intensity 1500 V/m.
- 5. Explain the construction and working of G.M. counter.
- 6. What is dead time and recovery time in G. M. counter? What do you mean by quenching?
- 7. Give applications of G. M. counter. What are its limitations?
- 8. If the uncertainty in position of an electron is  $4 \times 10^{-10}$  m, Calculate the uncertainty in

[Ans.  $\Delta p = 1.31 \times 10^{-25} kg m/s$ ]

- 9. What is the wavelength associated with an electron having K.E. equal to 1MeV.
- 10. For an electron moving with a velocity  $3 \times 10^7 m/s$ . Estimate the smallest possible uncertainty in the position of the electron.

Given:  $m_e = 9.1 \times 10^{-31} kg$ ,  $\hbar = 1.05 \times 10^{-34} J - s$ 

Ans.  $\Delta x = 0.038$ Å

11. An electron is confined to a box of  $10^{-9}m$  length. Calculate the minimum uncertainty in

 $[Ans. \Delta v = 7.3 \times 10^5 m/s]$ 

12. If the uncertainty in position of an electron is  $4 \times 10^{-10} m$ . Calculate the uncertainty in

[Ans.  $\Delta p = 1.65 \times 10^{-24} kg m/s$ ] 13. An electron has speed of 400m/s with uncertainty of 0.01%. Find the accuracy in its

$$[Ans. \Delta x = 2.898 \times 10^{-3} m]$$

14. An electron has a speed of 900m/s with an accuracy of 0.001%. Calculate the uncertainty with which the position of the electron can be located.

[Ans.  $\Delta x = 0.01288m$ ]



| QUESTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Explain different types of lattice in cubic<br>packing density for SC, BCC and FCC lattice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | system. What is packing density? Find th es.                                                |
| packing der the relation between lattice constant a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and density of the cubic crystal.                                                           |
| derive Bragg S Law Of A ruy annu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
| Transformed to the second state of the second | alacteristics A-lay speed and and the                                                       |
| Deduce relation between an interplaner d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Istalice u, lattice constant a and so                                                       |
| Derive an expression for the interplanar dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |
| structure, Calculate the fatto arou and the late the late and density are 6.94 and 530 kg/m <sup>3</sup> respective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | attice constant, given that the atomic weigh                                                |
| The interplaner spacing of (100) plane is 2 Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | for a FCC crystal. Find the atomic radius.                                                  |
| The interplaner spacing of (100) plane is 2 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [Ans.: $r = 0.70$ Å                                                                         |
| An electron is accelerated through 1000 vo<br>order reflection occurs when glancing angl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lts and is reflected from a crystal. The firs<br>e is 70°. Calculate interplaner spacing of |
| crystal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Ans.: $a = 0.59$ A                                                                         |
| Calculate the lattice constant of iron which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | has BCC structure. Given $\rho = 7.86 \ gm/cc$                                              |
| A=55.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [Ans.: $a = 2.861$ Å                                                                        |
| A-33.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s = 1 (1 s interplaner spacing fo                                                           |
| Silver has FCC structure and its atomic radiu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | is is 1.414A. Find the interplaner spacing                                                  |
| (200) planes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [Alls u200                                                                                  |
| Calculate the glancing angle on the plane<br>Consider the case of second order maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e (100) for rock salt crystal (a= 2.125Å<br>and wayelength of X-ray is 0.592Å.              |
| Consider the case of second of der mana-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Ans.: $\theta_2 = 10.17$                                                                   |
| • Calculate the glancing angle on cube (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of a rock salt having lattice constant 2.81Å                                                |
| to the first order Druge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Ans.: $\theta = 1000$                                                                      |
| • Calculate lattice constant and atomic radius<br>density 5.98 cm/os and atomic weight 50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c structure. Given                                                                          |
| <sup>density</sup> 5.98 gm/cc and atomic weight 50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [Ans.: $a = 3.031$ Å, $r = 1.31$ Å                                                          |



.

- 1. What is superconductivity? Explain type-I and type-II superconductors.
- What is superconducting state of
   What is Meissner effect and effect of external magnetic field on superconducting state of material?
- material 3. At 6 K, critical field is 5 x 10<sup>3</sup> A/m. Calculate transition temperature when critical field is  $2 \times 10^{14}$  A/m at 0 K.
  - [Ans.:  $T_C = 6.928K$ ]

- 4. Explain Meissner effect in superconductor.
- 5. A superconducting lead has a critical temperature of 7.26K at zero magnetic field and a critical field of  $8 \times 10^5 A/m$  at 0K. Find the critical field at 5K.

[Ans.  $4.2 \times 10^5 \ A/m$ ]

6. Superconducting Nb has a critical temperature of 9.15K at zero magnetic field and critical field of a 0.1960T at 0K. Find the critical field at 5K.

[Ans. 0.1377]

7. The critical field for niobium is  $1 \times 10^5 A/m$  at 8K and  $2 \times 10^5 A/m$  at absolute zero. Find the transition temperature of the element.

[Ans.:  $T_c = 11.3K$ ]

8. Find the critical field for lead at  $T = 4.2KT_c = 7.2K$  and  $B_c(0)$  for lead is 0.0803 Wb/  $m^2$ .

 $[B_c(T) = 0.0548 T]$ 

9. Calculate the critical current which can flow through a long thin superconducting wire of aluminum of diameter 1mm. The critical magnetic field for aluminum is  $7.9 \times 10^3 A/m$ .

[Ans.: 24.806A]

10. A superconducting tin has a critical temperature of 3.7K in zero magnetic field & a critical field of 0.0306T at 0K. Find the critical field at 2K.

[Ans.: 0.02165 T]

11. Calculate the magnetic field in lead at 5K. If it's critical magnetic field at 0K is  $8 \times 105$  A km s  $10^5 A/m$  and superconducting transition temperature  $T_c = 7.26K$ 

 $[Ans.: 4.2 \times 10^5 A/m]$ 

- What is Hall effect? Derive an expression for Hall Coefficient and mobility of charge carriers. Discuss two of its applications.
- What is Hall Effect? Derive the expression for Hall coefficient for n and p type semiconductor.
- 3. The conductivity and the Hall Coefficient of N-type semiconductor are 112 mho/m and 1.25 x 10<sup>-4</sup> m<sup>3</sup>/C respectively. Calculate the charge carrier density and electron mobility.

[Ans.:  $n = 5 \times 10^{22} \ electron/m^3$ ,  $\mu_e = 0.014 \ m^2/V_{-s}$ ]

4. The intrinsic carrier density at room temperature in Ge is  $2.37 \times 10^{19}$  /m<sup>3</sup>. If the electron and hole mobilities are 0.38 and 0.18 m<sup>2</sup>/V.s respectively, calculate its resistivity.

[Ans.:  $0.4717 \Omega m$ ]

5. The mobilities of carriers in intrinsic germanium sample at room temperature are  $\mu_c = 3600 \ cm^2/volt - sec$ ,  $\mu_p = 1700 \ cm^2/volt - sec$ . If the density of electrons is same as holes and is equal to  $2.5 \times 10^{13} per \ cm^3$ . Calculate the conductivity.

[Ans.:  $\sigma = 2.12 \text{ mho/m}$ ]

